2023 Future Supply Actions Funding Program Awards							
Lead Member Agency	Proposal Name	Resource	Description	Requested Funding			
Las Virgenes Municipal Water District	OceanWell: A Climate- Resilient, Eco-Friendly, Submerged Reverse Osmosis System	Seawater Desalination	The goal of this study is to validate the effectiveness of the OceanWell submerged reverse osmosis (SRO) technology and assess its capacity to contribute to local water supply. The study will involve monitoring and documenting the system's performance and effects through three key testing phases: (i) factory acceptance testing, (ii) initial testing in the reservoir to establish baseline performance, and (iii) long-term testing of the top-performing operations identified during the baseline tests	\$500,000			
Inland Empire Utilities Agency	Identifying and Removing PFAS Used in Well Drilling	Groundwater	This proposal seeks to investigate the link between widely used well drilling products like muds and annular seals and PFAS contamination in groundwater wells. The study proposes analyzing drilling mud products and water samples for PFAS, conducting bench-scale tests on PFAS-producing drilling products' short-term impacts, and piloting chemical well rehabilitation to assess PFAS reduction effectiveness.	\$207,500			
	Chino Basin Advance Water Purification Demonstration Facility	Recycled Water	This proposal outlines the creation of an approximately 100 gallons per minute Advanced Water Purification Demonstration Facility for the Chino Basin Program. The Demonstration Facility will conduct tests on microfiltration (MF), high-recovery reverse osmosis (RO), and ultraviolet advanced oxidation processes (UV-AOP), mirroring the treatment processes of the future full-scale AWPF.	\$401,500			
San Diego County Water Authority	Lake Henshaw Oxygenation Pilot Study	Stormwater	The proposed pilot study aims to explore the effectiveness of oxygenation as a method to prevent Harmful Algal Blooms (HABs) in Lake Henshaw by reducing bioavailable nitrogen and phosphorus, key nutrients for cyanobacteria growth. This study seeks to provide insights to the District and the City of Escondido regarding the effectiveness of oxygenation in controlling HABs and cyanotoxin production, while also assessing the size and cost implications of a permanent system to enhance water quality for both local and downstream users.	\$500,000			

Foothill Municipal Water District	Data-Driven Resource Optimization and Planning System (DROPS)	Stormwater	This proposal plans to use Data-Driven Resource Optimization and Planning System (DROPS) to integrate advanced data analytics and artificial intelligence to enhance water management. Sites will be prioritized based on comprehensive geospatial data including aerial and satellite imagery classifications, slope angles, historical rainfall depth, parcel land use, urban planning records, stormwater infrastructure, neighborhood income, and disadvantaged communities.	\$54,900
City of Long Beach	Ground Water Augmentation, Groundwater Collection System, and New Wells Site Study (Project)	Groundwater	This project aims to further develop a framework for future groundwater enhancement projects by updating and calibrating the existing Los Angeles Coastal Plan Groundwater Model provided by the United States Geological Survey. Potential well sites will be evaluated for extraction and injection purposes, with plans to install approximately fifteen extraction wells in the Central Basin and ten in the West Coast Basin. The project outcomes, including updated models and well-siting assessments, address regulatory requirements for indirect potable reuse and ensure the success of future groundwater enhancement efforts.	\$499,802
Los Angeles Department of Water and Power	Headworks Reservoir Complex Direct Potable Reuse Pilot	Recycled Water	This pilot test will utilize a 50-gallon per minute supply flow to evaluate four potential process trains for addressing pathogens and chemical contaminants in direct potable reuse, with a focus on post-treatment alternatives. The study aims to collect data demonstrating compliance with the Division of Drinking Waters Direct Potable Reuse regulations, evaluate different process trains' effectiveness for addressing intermittent chemical spikes, demonstrate integrity monitoring techniques, and assess operational performance and maintenance requirements of the AWPF equipment.	\$500,000